Overall Confidence Rating: H

Site: Tomato (Page 1)

Background: During 1994-96, there was a mean of 472,000 harvested acres (72% processed¹⁸, 28% fresh). CA, FL, OH, IN, and NY comprised 90% of the acreage⁴. Of the 874,000 acres treated, 17% were treated with organophosphates. Organophosphates were applied approximately 3.1 times per acre per year during the period⁵. Fresh tomatoes were treated much more than processed. CA produced about 95% of the processed and FL produced most of the fresh. The following insecticides have usage, registration, and tolerances¹² for tomatoes.

Organophosphate	% Treated ¹		# Appl	ications	Rate (lb	AI/A)	PHI (days)	
Pesticides	Max	Avg	Max ²	Avg ¹	Max ²	Avg ¹	Min ²	Avg
azinphos-methyl ^{1, 5, 10, 17}	25	15	411	1.510	1.5	0.6^{10}	0	7 ^{3a,c} - 14 ^{3c,e,u}
methamidophos ^{1, 5, 10, 17}	Process 11 Fresh 90	Process 9 Fresh 58	5	Process 1.1 Fresh 4.2	1	Process 0.9 Fresh 0.8	7	14 ^{3a}
dimethoate ^{1, 5, 10, 17}	10	9	2^{3}	1.410	0.5	0.5^{10}	7	7 ^{3a,c,e}
malathion ^{1, 5, 10, 17}	9	4	Not specified on labels	2.5	21.6	0.2	1	1 ^{3a}
diazinon ^{1, 5, 10, 17}	7	4	5	2	11.5	0.4	1	1 ^{3c} -60 ^{3a,t}
chlorpyrifos ^{1, 5, 10, 17}	4	2	8	1.4	1	Not Availab le	14	Not Availab le
methyl parathion ^{1,5,10}	3	1	Not specified on labels	1 ^{3d}	1.5	1 ^{7e}	5	15 ^{3a}
disulfoton ^{1, 5, 17}	0.1^{3a}	0	1	1	3	1.3	30	90^{3a}

Confidence Rating: H= hi

H= high confidence = data from several confirming sources; confirmed by personal experience

M = medium confidence = data from only a few sources; may be some conflicting or unconfirmed info.

L = low confidence = data from only one unconfirmed source

Organophosphate Target Pests for Tomatoes ⁵									
Major	aphids (potato, green peach) ^{6,7a} , tomato pinworm; wireworms; whiteflies (silverleaf ^{7a}); leafminer (<i>Liriomyza</i> ^{7a})								
Moderate	flea beetles; cutworm; symphylans; beet leafhopper ^{7a} ; tomato fruitworm; beet armyworm; Colorado potato beetle; fruit flies (<i>Drosophila</i> ^{7a}); crickets								
Minor	thrips; stink bugs; lygus bugs								

Major = 20+% of all OP usage on pest; Moderate = 5-20% of all OP usage on pest; Minor =<5% of all OP usage on pest

Note: Fonofos, oxydemeton-methyl, dicrotophos, naled¹⁹, and acephate have usage but not tolerances^{5, 12}.

Sources: (Crop and Pest Summaries)

- ¹QUA. 1993-1997. EPA Quantitative Usage Analysis. Methamidophos is the only insecticide for which average numbers of applications and lbs per year are available for fresh and processed; therefore, weighted averages are given for fresh and processed.
- ²LUIS. 1998. Label Use Information System, version 5.0, EPA.
- ^{3a}QUA+, Quantitative Usage Analysis, EPA. California Processing Tomato Industry FQPA Response. 1997. Diazinon and disulfoton were applied at plant.
- ^{3b}QUA+, Quantitative Usage Analysis, EPA. California Tomato Research Institute report to NCFAP. Insecticide Use on California Tomatoes. 1995. Wireworms, potato aphids, and stink bugs listed as major pests in processed tomatoes.
- ^{3c}QUA+, Quantitative Usage Analysis, EPA. Pesticide Use and Usage in Michigan 1997. 1998.
- ^{3e}QUA+, Quantitative Usage Analysis, EPA. Rutgers University, NJ. 1998.
- ^{3f}QUA+, Quantitative Usage Analysis, EPA. Valent. Methamidophos. 1998.
- ^{3g}QUA+, Quantitative Usage Analysis, EPA. Atochem. Methyl Parathion. 1998.
- ^{3t}MI had ca. 2% of acreage and CA 98%⁴, so weighted average PHI is 59.
- ^{3u}MI 2%, and CA 98% of the acreage⁴, so weighted average PHI is 13.
- ⁴Agricultural Statistics. USDA. 1998.
- ⁵Proprietary EPA Quantitative Pesticide Usage. 1997.
- ⁶ Proprietary EPA Quantitative Pesticide Usage. 1997.
- ^{7a}University of California, Pest Management Guidelines, Tomato. 1997.
- ^{7b}University of Florida, 1996 Florida Insect Management Guide, Insect Management in Tomatoes. 1996.
- ^{7c}Ohio Vegetable Production Guide, Tomatoes: Fresh Market and Processing, Insect Control. 1997.
- ^{7d}Purdue University [IN], Management of Insect Pests on Fresh Market Tomatoes. 1993.
- ⁷eCornell [NY] Cooperative Extension, Pest Management Recommendations, Control of Insect Pests of Tomatoes. 1998.
- ⁸ Proprietary EPA Quantitative Pesticide Usage. 1996.
- ¹⁰Agricultural Chemical Usage Vegetables 1996. USDA National Agricultural Statistics Service. 1997.
- ¹¹Insect Control Guide. Meister Publishing. 1997.
- ¹²Tolerance Index System. EPA. 1998.
- ¹³Arthropod Management Tests. Ent. Soc. America. 1997.
- ¹⁴Arthropod Management Tests. Ent. Soc. America. 1996.
- ¹⁵Arthropod Management Tests. Ent. Soc. America. 1994.
- ¹⁶EPA Section 18 records. 1995-1998.
- ¹⁷US Geological Survey, Pesticide National Synthesis Project, Tomatoes for 1997. 1998.
- ¹⁸Balling, S., Processed Tomato Foundation, 925-944-7377, stated in telephone communication that up to 95% of processed tomatoes produced in CA. 7/8/98.
- ¹⁹FR 63:3057-3060. WWW.cas.psu.edu/docs/.
- ²⁰OP Tolerance Assessment Matrix Populating Instructions & Data Dictionary, EPA, 1998.
- ²¹Rivara, C. California Processing Tomato Industry. Comments on draft. July 17, 1998.
- ²²University of California. California Pesticide Use Summaries, Tomato, Tomato (processing/canning) for 1994. 1998.
- ²³California Dept. Pesticide Regulation and Univ. California Statewide IPM Program. Pest Management Survey Database. Tomato. 1996
- ²⁴Agricultural Information Services, Ltd. 1997. World Pest Infestation Database. Tomato, Georgia, North Carolina, California.
- ²⁵www.nass.usda.gov/oh, ny, in. 1997 vegetable production stats. 1998.

Date: 8/3/98

Pest	Organophosphate	Efficacy	Mkt		Class	Alt. Pesticide List	Efficacy	Mkt	Constraints of Alternatives
Timing: Seedl	ing								
whitefly (silverleaf) ^{7b} (major) ⁵ azinphos-methyl ⁵ methamidophos ⁵	azinphos-methyl ⁵		med ⁵		О	imidacloprid ⁵		high ⁵	Imidacloprid essential to prevent tomato yellow leaf curl virus season-long ^{7b} .
	methamidophos ⁵		med ⁵	d ⁵	С	oxamyl ⁵		med ⁵	Bifenthrin effective in Florida plot tests ¹³ . In GA, pyrethroids used with excellent efficacy ²⁴ .
				Р	cyhalothrin-lambda ⁵		med 5		
					P	permethrin ⁵		med 5	Permethrin tank mix with methamidophos . ^{7a}
aphid (major) ⁵	methamidophos ⁵		high ⁵		О	imidacloprid ⁵		high ⁵	In NC, diazinon, acephate, dimethoate good efficacy.
tomato	azinphos-methyl ⁵		high ⁵		С	methomyl ⁵		high ⁵	
pinworm (major) ⁵					О	tredecen acetate pheromone ^{7a}			Pheromone suppresses populations using trapping
					В	Bacillus thuringiensis ⁵		high ⁵	stations. ^{7b}
					Р	permethrin ⁵		high ⁵	

ADDITIONAL INFORMATION:

Note: Analyzed pests make up >95% of OP usage.

SOURCES: See crop summary.

Date: 6/24/98

Pest Importance: Major = 20+% of all OP usage on pest; Moderate = 5-20% of all OP usage on pest; Minor = <5% of all OP usage on pest

Efficacy Rating: Excellent = \bigcirc Good = \bigcirc Fair = \bigcirc

Market Share: High = use of OP represents 20+% of all insecticide usage on pest; Med = 5-20% of all usage on pest; Lo = <5% of all usage on pest Insecticides: C = Carbamates; P = Pyrethroids; CH = Chlorinated Hydrocarbons; IGR = Insect Growth Regulators; B = Biological; O = Other pesticides

Pest	Organophosphate	Efficacy	Mkt		Class	Alt. Pesticide List	Efficacy	Mkt	Constraints of Alternatives
Timing: Folia	ge/Fruit								
whitefly	chlorpyrifos ⁵		med ⁵	med ⁵	P	permethrin ⁵		med ⁵	In fresh-market field plots, at-plant imidacloprid
(silverleaf) ^{7b} (major) ⁵	methamidophos ⁵		med ⁵			СН	endosulfan ⁵		med ⁵
	azinphos-methyl ⁵		low ⁵		P	fenpropathrin ⁵		med ⁵	whitefly in field tests. Lambda-cyhalothrin plus methamidophos effective on stink bug. ¹³ .
					C	oxamyl ⁵		med ⁵	Amitraz, azadirachtin, fosetyl, bifenthrin, and endosulfan effective in Florida field trials ¹⁴ . In
			П		О	imidacloprid ⁵	⊚13	med ⁵	GA, pyrethroids used with excellent efficacy ²⁴ .
					P	esfenvalerate ⁵		low ⁵	
					С	methomyl		low ⁵	
					P	cyhalothrin-lambda ⁵		low ⁵	
					P	cyfluthrin ⁵		low ⁵	
beet	chlorpyrifos ⁵		med ⁵		В	Bacillus thuringiensis ⁵		high ⁵	
armyworm (moderate) ⁵	methamidophos ⁵		low ⁵	w ⁵	С	methomyl ⁵		med ⁵	
					СН	endosulfan ⁵		low ⁵	
					Р	permethrin ⁵		med ⁵	
					P	esfenvalerate ⁵		med ⁵	

Pest Importance: Major = 20+% of all OP usage on pest; Moderate = 5-20% of all OP usage on pest; Minor = <5% of all OP usage on pest Efficacy Rating: Excellent = ⑤ Good = O Fair = ●

Market Share: High = use of OP represents 20+% of all insecticide usage on pest; Med = 5-20% of all usage on pest; Lo = <5% of all usage on pest Insecticides: C = Carbamates; P = Pyrethroids; CH = Chlorinated Hydrocarbons; IGR = Insect Growth Regulators; B = Biological; O = Other pesticides

Pest	Organophosphate	Efficacy	Mkt		Class	Alt. Pesticide List	Efficacy	Mkt	Constraints of Alternatives
Timing: Folia	ge/Fruit								
leafminer (major) ⁵	methamidophos ⁵		high ⁵		0	abamectin ⁵		med ⁵	
	dimethoate ⁵		low ⁵		С	oxamyl ⁵		med ⁵	
					СН	endosulfan ⁵		med ⁵	
					P	permethrin ⁵		med ⁵	
					В	Bacillus thuringiensis ⁵		med ⁵	
					О	cyromazine ⁵		low ⁵	
aphid (moderate) ⁵	chlorpyrifos ⁵		med ⁵		СН	endosulfan ^{5,3f}		med ⁵	Pymetrozine, foliar imidacloprid, and dimethoate effective in field trials in Florida ¹⁴ .
(moderate)	methamidophos ⁵		high ⁵		C	methomyl ^{3f,5}		high ⁵	effective in field thats in Florida".
					О	imidacloprid ⁵		med ⁵	
					P	esfenvalerate ^{5,3f}		low ⁵	
					P	permethrin ⁵		low ⁵	
tomato	chlorpyrifos ⁵		low ⁵		В	Bacillus thuringiensis ⁵	⊚15	high ⁵	Thiodicarb very effective in field trials in
pinworm (moderate) ⁵	methamidophos ⁵		low ⁵		C	methomyl ⁵	⊚ ¹⁴	high ⁵	Florida14. Bifenthrin moderately effective in plots ¹³ .
					P	permethrin ⁵		med ⁵	
					Р	esfenvalerate ⁵		low ⁵	
					В	azadirachtin ⁵		low ⁵	

Pest Importance: Major = 20+% of all OP usage on pest; Moderate = 5-20% of all OP usage on pest; Minor = <5% of all OP usage on pest Efficacy Rating: Excellent = ⑤ Good = O Fair = ●

Market Share: High = use of OP represents 20+% of all insecticide usage on pest; Med = 5-20% of all usage on pest; Lo = <5% of all usage on pest Insecticides: C = Carbamates; P = Pyrethroids; CH = Chlorinated Hydrocarbons; IGR = Insect Growth Regulators; B = Biological; O = Other pesticides

Pest	Organophosphate	Efficacy	Mkt	Class	Alt. Pesticide List	Efficacy	Mkt	Constraints of Alternatives
Timing: Folia	nge/Fruit							
thrips	methamidophos ⁵	© ²⁴	high ⁵	P	esfenvalerate ^{5,3f}		med ⁵	
(minor) ⁵	dimethoate ^{5,3f}		low ⁵	P	permethrin ⁵		low ⁵	
	chlorpyrifos ⁵		low ⁵	СН	endosulfan ^{5,3f}		low ⁵	
				P	cyfluthrin ⁵		low ⁵	
				P	cyhalothrin-lambda ⁵		low ⁵	
				О	imidocloprid⁵		low ⁵	
tomato	chlorpyrifos ⁵		low ⁵	С	methomyl ⁵	© ²⁴	high ⁵	In GA, pyrethroids used with excellent efficacy ²⁴ .
fruitworm (moderate) ⁵	methamidophos ⁵		med ⁵	В	Bacillus thuringiensis ⁵		high ⁵	
				В	azadirachtin ⁵		low ⁵	
				P	permethrin ⁵		high ⁵	
				PY	esfenvalerate⁵	⊚24	low ⁵	
				СН	endosulfan⁵	⊚24	low ⁵	

ADDITIONAL INFORMATION:

Note: Analyzed pests make up >95% of OP usage.

SOURCES: See crop summary.

Date: 6/24/98

Pest Importance: Major = 20+% of all OP usage on pest; Moderate = 5-20% of all OP usage on pest; Minor = <5% of all OP usage on pest Efficacy Rating: Excellent = ⑤ Good = O Fair = ●

Market Share: High = use of OP represents 20+% of all insecticide usage on pest; Med = 5-20% of all usage on pest; Lo = <5% of all usage on pest Insecticides: C = Carbamates; P = Pyrethroids; CH = Chlorinated Hydrocarbons; IGR = Insect Growth Regulators; B = Biological; O = Other pesticides